Complex Fuzzy Computing to Time Series Prediction A Multi-Swarm PSO Learning Approach

نویسندگان

  • Chunshien Li
  • Tai-Wei Chiang
چکیده

A new complex fuzzy computing paradigm using complex fuzzy sets (CFSs) to the problem of time series forecasting is proposed in this study. Distinctive from traditional type-1 fuzzy set, the membership for elements belong to a CFS is characterized in the unit disc of the complex plane. Based on the property of complex-valued membership, CFSs can be used to design a neural fuzzy system so that the system can have excellent adaptive ability. The proposed system is called the complex neuro-fuzzy system (CNFS). To update the free parameters of the CNFS, we devise a novel hybrid HMSPSO-RLSE learning method. The HMSPSO is a multi-swarm-based optimization method, first devised by us, and it is used to adjust the premise parameters of the CNFS. The RLSE is used to update the consequent parameters. Two examples for time series foresting are used to test the proposed approach. Through the experimental results, excellent performance has been exposed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational Intelligence Hybrid Learning Approach to Time Series Forecasting

Time series forecasting is an important and widely popular topic in the research of system modeling. This paper describes how to use the hybrid PSO-RLSE neuro-fuzzy learning approach to the problem of time series forecasting. The PSO algorithm is used to update the premise parameters of the proposed prediction system, and the RLSE is used to update the consequence parameters. Thanks to the hybr...

متن کامل

Intelligent financial time series forecasting: A complex neuro-fuzzy approach with multi-swarm intelligence

Financial investors often face an urgent need to predict the future. Accurate forecasting may allow investors to be aware of changes in financial markets in the future, so that they can reduce the risk of investment. In this paper, we present an intelligent computing paradigm, called the Complex Neuro-Fuzzy System (CNFS), applied to the problem of financial time series forecasting. The CNFS is ...

متن کامل

ارائه یک رویکرد فازی برای بهینه‌سازی پیش‌بینی سری زمانی با مرتبه بالا

It is difficult to apply the real world’s conceptions due to their uncertainty. Generally, time series are known to be non-linear or non-stationary. Regarding these two features, a system should be sensitive enough to apply the unity of time series and repeat this sensitiveness in the prediction. A predict system can exactly scrutinize the hidden features of time series and also can have high p...

متن کامل

ANFIS Based Time Series Prediction Method of Bank Cash Flow Optimized by Adaptive Population Activity PSO Algorithm

In order to improve the accuracy and real-time of all kinds of information in the cash business, and solve the problem which accuracy and stability is not high of the data linkage between cash inventory forecasting and cash management information in the commercial bank, a hybrid learning algorithm is proposed based on adaptive population activity particle swarm optimization (APAPSO) algorithm c...

متن کامل

A hierarchical Mamdani-type fuzzy modelling approach with new training data selection and multi-objective optimisation mechanisms: A special application for the prediction of mechanical properties of alloy steels

In this paper, a systematic data-driven fuzzy modelling methodology is proposed, which allows to construct Mamdani fuzzy models considering both accuracy (precision) and transparency (interpretability) of fuzzy systems. The new methodology employs a fast hierarchical clustering algorithm to generate an initial fuzzy model efficiently; a training data selection mechanism is developed to identify...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011